Sorting
1. The time complexity of the normal quick sort, randomized quick sort algorithms in the worst case is
A.  O(n^2), O(n log n) B.  O(n^2), O(n^2) C.  O(n log n), O(n^2) D.  O(n log n), O(n log n) E.  O(n log n), O(n^2 log n).
2. Let there be an array of length ‘N’, and the selection sort algorithm is used to sort it, how many times a swap function is called to complete the execution?
A.  N log N times B.  log N times C.  N2 times D.  N-1 times E.  N times.
3. Sorting is not possible by using which of the following methods?
A.  Insertion B.  Selection C.  Deletion D.  Exchange
4. For the bubble sort algorithm, what is the time complexity of the best/worst case? (assume that the computation stops as soon as no more swaps in one pass)
A.  best case: O(n) worst case: O(n*n) B.  best case: O(n) worst case: O(n*log(n)) C.  best case: O(n*log(n)) worst case: O(n*log(n)) D.  best case: O(n*log(n)) worst case: O(n*n)
5. For the quick sort algorithm, what is the time complexity of the best/worst case?
A.  best case: O(n) worst case: O(n*n) B.  best case: O(n) worst case: O(n*log(n)) C.  best case: O(n*log(n)) worst case: O(n*log(n)) D.  best case: O(n*log(n)) worst case: O(n*n)
6. Which of following algorithm scans the list by swapping the entries whenever pair of adjacent keys are out of desired order?
A.  Insertion sort B.  Quick sort C.  Shell sort D.  Bubble sort
7. Identify the name of the sorting in which time is not proportional to n2.
A.  Selection sort B.  Bubble sort C.  Qucik sort D.  Insertion sort
8. . Identify the name of the sorting in which time is not proportional to n2.
A.  Selection sort B.  Bubble sort C.  Qucik sort D.  Insertion sort
9. This algorithm scans the list by swapping the entries whenever pair of adjacent keys are out of desired order.
A.  Insertion sort. B.  Bubble sort. C.  Shell sort. D.  Quick sort.
10. Quick sort invented by _____________
A.  CARHOARE B.  HAMILTON C.  JOHN VON NEUMANN D.  STRASSEN